
Supplementary Information 

 

The landscape of somatic copy-number alteration across 
human cancers  

 
 
Rameen Beroukhim*, Craig H. Mermel*, Dale Porter, Guo Wei, Soumya Raychaudhuri, 
Jerry Donovan, Jordi Barretina, Jesse S. Boehm, Jennifer Dobson, Mitsuyoshi Urashima, 
Kevin T. Mc Henry, Reid M. Pinchback, Azra H. Ligon, Yoon-Jae Cho, Leila Haery, 
Heidi Greulich, Michael Reich, Wendy Winckler, Michael S. Lawrence, Barbara A. 
Weir, Kumiko E. Tanaka, Derek Y. Chiang, Adam J. Bass, Alice Loo, Carter Hoffman, 
John Prensner, Ted Liefeld, Qing Gao, Derek Yecies, Sabina Signoretti, Elizabeth Maher, 
Frederic J. Kaye, Hidefumi Sasaki, Joel E. Tepper, Jonathan A. Fletcher, Josep 
Tabernero, Jose Baselga, Ming-Sound Tsao, Francesca DeMichelis, Mark A. Rubin, Pasi 
A. Janne, Mark J. Daly, Carmelo Nucera, Ross L. Levine, Benjamin L. Ebert, Stacey 
Gabriel, Anil K. Rustgi, Cristina R. Antonescu, Marc Ladanyi, Anthony Letai, Levi A. 
Garraway, Massimo Loda, David G. Beer, Lawrence D. True, Aikou Okamoto, Scott L. 
Pomeroy, Samuel Singer, Todd R. Golub, Eric S. Lander, Gad Getz, William R. Sellers, 
and Matthew Meyerson  

 
 
 
* Contributed equally. 



0

20

40

60

80

100

120

140

Deletions
Amplifications

M
ye

lo
pr

ol
ife

ra
tiv

e 
di

so
rd

er
M

yx
oi

d 
lip

os
ar

co
m

a
A

cu
te

 ly
m

ph
ob

la
st

ic
 le

uk
em

ia
S

yn
ov

ia
l s

ar
co

m
a

M
ed

ul
lo

bl
as

to
m

a
N

eu
ro

bl
as

to
m

a
R

en
al

G
IS

T
H

ep
at

oc
el

lu
la

r
N

on
-H

od
gk

in
’s

 ly
m

ph
om

a
C

ol
or

ec
ta

l
G

lio
m

a
M

es
ot

he
lio

m
a

A
ll 

ca
nc

er
s

Th
yr

oi
d

M
el

an
om

a
P

ro
st

at
e

Le
io

m
yo

sa
rc

om
a

Lu
ng

 N
S

C
O

va
ria

n
Lu

ng
 S

C
B

re
as

t
G

as
tri

c
E

so
ph

ag
ea

l s
qu

am
ou

s
E

so
ph

ag
ea

l a
de

no
ca

rc
in

om
a

P
le

om
or

ph
ic

 li
po

sa
rc

om
a

M
al

ig
na

nt
 fi

br
ou

s 
hi

st
io

cy
to

m
a

D
ed

iff
er

en
tia

te
d 

lip
os

ar
co

m
a

Average number of SCNAs per tumor type

N
um

be
r o

f S
C

N
A

s

b

a

2

3

4

1

0

C
op

y 
N

um
be

r

Chromosomal Position (Mb)

SCNA characterization schematic

5

2 3 410 5

∆CN = 2 copies
Length = 0.5 Mb

SCNA #1

∆CN = 1 copy
Length = 3 Mb

SCNA #3

∆CN = -1 copies
Length = 1.5 Mb

SCNA #4

∆CN = 0.5 copies
Length = 0.5 Mb

SCNA #2

Supplementary Figure 1.  Identifying individual SCNAs. a) Schematic of the method for
determining SCNA length and amplitudes from complex copy-number profiles.  A 
hypothetical copy-number profile (green) is separated into amplification (red) and 
deletion (blue) events as shown. b) Bar graph of average number of amplification (red)
and deletion (blue) events per tumor for each cancer type with >4 samples.  “All cancers” 
represents the entire dataset.

Supplementary Figures and Legends
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Supplementary Figure 2. Increased prevalence of arm-level SCNAs relative to focal 
SCNAs of nearly the same length, across the 16 tumor types with >40 samples. Data are 
presented as in Figure 1a.  
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Resolution vs sample size Supplementary Figure 3. Characteristics of focal SCNAs. 
a) The number of focal amplification (red) and deletion (blue) 
peaks identified using GISTIC on random subsets of the data. 
Crosses represent individual randomizations; lines represent 
averages over all randomizations for a given sample size. 
b) Robustness of focal SCNA analysis to removal of each of the 
five most represented tumor types (Lung NSC, acute 
lymphoblastic leukemia, breast, myeloproliferative disorder, 
and colorectal) or all cell lines.  The fraction of the 76 
amplification peaks (red) and 82 deletion peaks (blue) still
identified as peak regions when each tumor type is removed is
plotted. c) Frequency of significant arm-level (large circles)
and focal (small dots) amplifications (red) and deletions (blue),
sorted by increasing frequency. d) Method for determining 

confidence regions likely to include the true target of focal SCNAs. Local maxima in the G-score (G   ) correspond
to a “minimal common region” of overlap and generally reflect the presence of nearby “target genes” whose alteration
plays a role in driving cancer growth. However, the presence of technical and biological noise (”passenger SCNAs”)
may displace G     from the true target. DG represents the maximum local variation expected in 95% of cases due to
such noise. Subtracting DG from G    allows us to determine a confidence region at least 95% likely to contain the gene
target (details in Mermel et al, manuscript in preparation). e) Increasing sample size leads to better resolution of likely 
gene targets. For each of the random tumor subsets in a), we ranked peaks by q-value and computed the median number
of genes in each group of 20 peaks, starting with the most significant. 
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Supplementary Figure 4. The frequency and significance of MCL1 amplification in human cancers. a) Representative 
FISH results showing high-level MCL1 amplification (green signals) in the breast cancer cell line HCC1954. The 
chromosome 1 centromere is stained red. b) Summary of MCL1 FISH results in a panel of 47 primary breast cancer and 
90 primary lung cancer samples. High-level MCL1 amplification (blue) was defined as MCL1 copy number greater than 
3x that of the chromosome 1 centromere; focal, low-level MCL1 amplification (red) was defined as MCL1 copy numbers 
less than this but exceeding the centromere; and polysomy of 1q (green) was defined as equal copy numbers of both MCL1 
and the chromosome 1 centromere but exceeding the number of copies of the chromosome 11 centromere. c) Efficacy of 
doxycycline-inducible MCL1 knock-down. Western blot analysis of MCL1 protein levels in the 7 cell lines tested in 
Figure 3c before and after induction of inducible anti-MCL1 shRNA or non-targeting control. GAPDH was used as a 
protein loading control. For H2110 (MCL1 amplified) and H1792 (MCL1 unamplified), cleaved PARP levels were also 
determined before and after induced expression of anti-MCL1 and non-targeting shRNAs. d) siRNA knock-down efficacy 
for MCL1 and neighboring genes. Quantitative RT-PCR was used to measure mRNA transcript expression before and after 
introduction of siRNAs against the 7 non-provisional genes in the MCL1 peak in H2110 cells (as shown in Figure 3d). 
The expression of each transcript after knock-down is graphed as a fraction of the expression in mock-treated cell lines. 
No expression of CTSK was detected in mock-transfected H2110 cells. e) Comparison of the effects of multiple 
anti-MCL1 shRNAs and siRNAs in H2110 cells. H2110 cells were infected with three independent shRNA constructs 
against MCL1, and treated with an anti-MCL1 Dharmacon siRNA SMART pool and a single siRNA sequence from that 
pool. For each treatment, the change in cell number (proliferation rate) over 48 hours (as measured by CellTiterGlo, 
Promega), relative to non-targeting control, is shown.
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Supplementary Figure 5. Supporting data for BCL2L1 and MCL1 experiments. a) Segmented copy-number 
profiles among 50 tumors of various lineages (shown across the top) with focal amplification of BCL2L1 are 
displayed for the region around BCL2L1 (genomic locations are indicated on the left; distances are proportional to 
the number of SNP array markers mapping to the region). b) Efficacy of BCL2L1 knock-down in cell lines. 
Western blot analysis of BCL2L1 and cleaved PARP protein levels in 6 cell lines tested in figure 3e after infection 
with anti-BCL2L1 shRNA or non-targeting control. Actin was used as a protein loading control. c) Increased levels 
of apoptosis induced by MYC expression in immortalized lung epithelial cells   are reversed by expression of MCL1 
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MYC, and actin (as loading control) were assessed by immunoblot. d) In a separate experiment, these cells were 
washed, stained with anti-Annexin antibody (BioVision) and propidium iodide (Sigma), and analyzed by flow 
cytometry.

1



Fr
eq

ue
nc

y 
of

 S
C

N
A

s 
in

vo
lv

in
g 

w
ho

le
 c

hr
om

os
om

e 
ar

m

Number of genes on chromosome arm
0 500 1000 1500

0.16

0.2

0.24

0.28

0.32

0.36

0.4

R = –0.529
p = 0.0005

1p

1q

2p
2q

3p

3q

4p

4q

5p

5q

6p

6q

7p

7q

8p

8q

9p

9q
10p

10q

11p

11q

12p

12q

13q

14q
15q

16p

16q

17p

17q

18p

18q

19p

19q

20p

20q
21q

22q

Supplementary Figure 6. The frequency of arm-level SCNAs is negatively correlated with the 
number of genes covered. The red line represents a sum of least squares fit to the data.



c Significant focal SCNAs

A
m

pl
ifi

ca
tio

ns
D

el
et

io
ns

Significance
rank

1

76
1

82

Hematopoietic
Neural
Sarcomas
Epithelial

Cancer lineage

17 16 20 32225 19 216 11 13 12 2 7 18 10 8 5 4 26 23 24 9 15 1 14

MYC
CCND1
ERBB2
CDK4

MDM2
EGFR
MCL1
FGFR1
KRAS

10 most significant focal amplifications

10 most significant focal deletions
CDKN2A/B
FHIT
WWOX
PTPRD
MACROD2
PARK2
RB1
LRP1B
FAT
PDE4D

-

Cancer type
1  Myeloproliferative disorder
2  Acute lymphoblastic leukemia

4 Neuroblastoma
5 Medulloblastoma

3  Non-Hodgkin’s lymphoma

6 Melanoma
7  Glioma
8  Synovial sarcoma

15  Renal

9  Mesothelioma
10  GIST
11  Leiomyosarcoma
12  Pleomorphic liposarcoma
13  Malignant fibrous histiosarcoma
14  Dedifferentiated liposarcoma

16  Gastric
17  Esophageal adenocarcinoma
18  Colorectal
19  Thyroid
20  Esophageal squamous
21  Prostate
22  Lung small cell
23  Lung non-small cell
24  Hepatocellular
25  Ovarian
26  Breast

1

2

3

4

5

6

7
8
9

10

11
12
13
14
15
16
17

1819202122

C
hr

om
os

om
e

Melanoma Renal Colorectal
Lung

non-small cell Hepatocellular

1

2

3

4

5

6

7
8
9

10

11
12
13
14
15
16
17

1819202122

C
hr

om
os

om
e

1 2 4 1585 6 73 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26

a

b

Neural EpithelialHeme

Arm-level SCNAs

AmplificationDeletion

Per cancer type:
higher frequency of

Sarcomas
(2 clusters)

17 16 20 32225 19 216 11 13 12 2 7 18 10 8 5 4 26 23 24 9 15 1 14

Mixed clustering

d

AmplificationDeletion

Per sample:
copy number



Supplementary Figure 7. Clustering of tumor types by arm-level and focal SCNAs. a) Specific 
arm-level SCNAs can reach high frequencies among individual cancer types. Copy-number profiles 
(only arm-level SCNAs were included in this view) are displayed for samples selected among five 
tumor types (arranged across the x-axis) across all autosomes (positions indicated along the 
y-axis). Red and blue represent gains and losses, respectively. b) Arm-level SCNAs distribute 
across cancer types by developmental lineage. For each of the 26 cancer types studied, each 
chromosome arm was assigned an excess amplification score representing the frequency of 
arm-level gain minus the frequency of arm-level loss. Positive and negative scores are displayed 
in red and blue, respectively. Tumor types are arranged along the x-axis according to the results of 
unsupervised hierarchical clustering (see Supplementary Methods) of these scores (dendrogram is 
on the bottom). Developmental lineage reflects the ICD-O classification scheme except for 
melanoma, which we designated as of neural lineage due to its derivation from the neural crest. 
c) All 158 significant focal events (arranged on y-axis according to significance of amplification, 
followed by significance of deletion) across the 26 cancer types studied in part b), arranged along the 
x-axis according to the results of unsupervised hierarchical clustering of excess amplification scores 
(dendrogram is on the bottom). d) Excess amplification scores are displayed for the 10 most 
significant focal amplifications (upper panel) and deletions (lower panel), ranked top to bottom and 
denoted by putative target genes from each region. The ordering of the tumor types along the x-axis 
is the same as in part c).
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Supplementary Figure 8. Average level of focal amplification (top) and deletion (bottom) along a 
chromosome arm. Each chromosome arm was rescaled to a common length, and the average G-score 
(in blue; see Supplementary Methods) across all chromosome arms and samples was calculated as a 
function of distance from the telomere.  For comparison, the green line corresponds to our False 
Discovery Rate q-value threshold of 0.25; G-scores above this line are considered significant.  The 
variations observed in average G-score along the chromosome arm are small compared to this threshold.  
However, there is a tendency for telomeric regions to be focally deleted.  As a result, telomeric deletions 
have to rise less above the average level to attain significance. 



Supplementary Methods 
 
1. DNA isolation and hybridization to arrays 
 
Previously published SNP array datasets were generated as described (Barretina, in 
review) 1,2,3,4,5,6,7,8,9,10,11,12,13. For unpublished data, DNA was obtained from cell line 
pellets or tumors frozen at the time of surgical dissection and maintained at -80C until 
use, with the exception of 11 gliomas from which sufficiently high-quality DNA could be 
obtained from paraffin-embedded samples 14. The majority of tumors were obtained at 
primary surgery, with the exceptions of 27 prostate tumors obtained through rapid 
autopsy programs at the Universities of Washington 15 and Michigan 16. Each sample was 
genotyped using the Sty I chip of the 500K Human Mapping Array wet (Affymetrix), 
containing probes to 238,270 SNP loci, according to manufacturer’s instructions. In brief, 
250 ng of genomic DNA was digested with the StyI restriction enzyme (New England 
Biolabs), ligated to an adaptor with T4 ligase (New England Biolabs), and PCR-amplified 
using a 9700 Thermal Cycler I (Applied Biosystems) and Titanium Taq (Clontech) to 
achieve fragments ranging from 200-1100 bp. These fragments were pooled, 
concentrated, processed through a clean-up step, and further fragmented with DNaseI 
(Affymetrix) before being labeled, denatured, and hybridized to arrays. Arrays were then 
scanned using the GeneChip Scanner 3000 7G (Affymetrix). Samples were processed in 
batches of 96 on a single plate using a Biomek FX robot with dual 96 and span-8 heads 
(Beckman Coulter) and a GeneChip Fluidics Station FS450 (Affymetrix) and tracked 
using 2D barcode racks and single tube readers (ABGene). Raw data are available at 
www.broad.mit.edu/tumorscape.  
 
2. Generation of segmented data 
 
Probe-level signal intensities were normalized to a common reference array using 
quantile normalization 17 and combined to form SNP-level signal intensities using the 
model-based expression (PM/MM) method 18.  For each tumor, genome-wide copy 
number estimates were obtained using tangent normalization, in which tumor signal 
intensities are divided by signal intensities from the linear combination of all normal 
samples that is most similar to the tumor (to be described in greater detail in Getz et al, in 
preparation). This linear combination of normal samples tends to match the noise profile 
of the tumor better than any set of individual normal samples, thereby reducing the 
contribution of noise to the final copy-number profile. However, similar results were also 
obtained using other previously described methods 19 (data not shown). Normal samples 
used in this process were confirmed to lack contamination with tumor cells by visual 
inspection of their copy-number profiles. Copy number profiles were segmented using 
the Gain and Loss of DNA (GLAD) algorithm 20 with default parameters. Results were 
robust to modification of these parameters or use of Circulary Binary Segmentation 21 
(data not shown).  SNP markers within previously mapped CNVs 22 were removed, as 
were the 10,000 SNPs with the highest absolute G-scores (see below) in our panel of 



1480 normal samples and any SNPs that were aberrant in >1% of these normal samples.  
Segments containing fewer than 6 SNPs were removed. 
 
3. Determination of SCNA lengths and amplitudes  
 
Copy-number profiles were deconstructed into individual SCNAs as shown in 
Supplementary Figure 1a. The method (to be described in greater detail in Mermel et al, 
in preparation) determines the minimum number of SCNAs required to reconstruct the 
copy-number profile. Initially, amplifications are only allowed to overlap amplifications 
and vice versa for deletions, providing a unique solution to the lengths and amplitudes of 
these SCNAs. In reality, however, amplifications may overlap deletions, leading to many 
possible SCNA combinations that could produce a given profile. We applied an iterative 
optimization algorithm to determine which of these solutions was most likely. Here, the 
distributions of lengths and amplitudes for SCNAs determined in one iteration were then 
used to score the likelihood of different possible SCNA combinations in the next 
iteration. To reduce computation time, the number of possible SCNA combinations was 
limited by allowing only two SCNAs per chromosome to form basal copy-number levels 
with which both amplification and deletion SCNAs might overlap. These basal SCNAs 
were separated by a single breakpoint that might reside anywhere in the chromosome. 
  
4. Length and amplitude thresholds 
 
The length of each SCNA was converted into chromosome-arm units by calculating the 
fraction of each chromosome arm covered by the SCNA; for SCNAs that cross the 
centromere, the length is expressed as the sum of the fractions of each chromosome arm 
covered by the SCNA. This normalization allowed for the comparison of events 
occurring on chromosome arms of different length and results in length values ranging 
between 0 and 2.  Five chromosomes (13, 14, 15, 21, and 22) have fewer than 8 probes 
mapping to the short (p) arm; for these chromosomes, only the q-arm is counted, resulting 
in a maximal SCNA length of 1.  Removal of these chromosomes does not substantially 
affect the distribution of SCNA lengths as shown in Figure 1a or Supplementary Figure 
2, nor does it explain the excess of single-arm length SCNAs relative to focal SCNAs of 
nearly the same size (data not shown).  
 
SCNAs with lengths > 0.98 chromosome arms were used for arm-level analyses and 
SCNAs with lengths < 0.5 chromosome arms were used for focal analyses. The results of 
these focal analyses were not significantly different when the focal length threshold was 
varied from 0.3 to 0.98 (data not shown). 
 
Only SCNAs with copy number changes >0.1 or <-0.1 inferred copies were included in 
subsequent analyses.  These thresholds were achieved in 0.35% and <0.1% of 
amplifications and deletions in normal samples (representing rare germline CNVs and 
occasional analytic artifact). 
 
5. Assessing the significance and tissue distribution of arm-level SCNAs 
 



Across the entire dataset, we noted that the frequency with which chromosomal arms are 
measured to undergo gain or loss is negatively correlated with the size of that arm 
(Supplementary Figure 6).  Two potential explanations for this trend are that longer 
chromosome arms have a lower background rate of copy number change, or that copy 
changes affecting larger chromosome arms are subject to a greater degree of negative 
selection.   In either case, deviations from this trend suggest the presence of additional 
selective pressures.  Chromosome arm-level SCNAs which are observed less frequently 
than predicted likely undergo additional negative selective pressure. Conversely, arm-
level SCNAs that are observed more frequently than predicted are likely to be affected by 
either positive selection, or a relative absence of negative selection.    
 
To determine which arms were significantly enriched/depleted among copy gains and 
losses, and therefore suggesting the presence of additional selective pressures, we 
compared the expected frequency of gain and loss for each arm, determined by linear 
regression (average alteration frequency vs. # genes on chromosome arm), with the actual 
frequency observed over the entire dataset.  Since samples with gain of a chromosome 
arm cannot have loss of the same arm, we computed the frequency of gains and loss 
among the undeleted and unamplified samples, respectively.  By decoupling the gains 
and losses in this way, the frequency metric follows a binomial distribution; z-scores for 
each arm were calculated using the normal approximation to the binomial (Figure 1b), 
and the resulting p-values were corrected for multiple hypothesis testing using the 
Benjamini-Hochberg FDR method 23.   
 
To assess how these tissue specific arm-level patterns compared across tumor types, we 
computed the frequency of arm-level gain minus the frequency of arm-level loss for each 
arm within each tumor type for which we had greater than 20 samples (see 
Supplementary Figure 7b).  Hierarchical clustering of the resulting values was performed 
using the Pearson correlation distance metric and complete linkage.  Replicate clustering 
with multiple distance metrics and filtering criteria gave broadly similar results (data not 
shown).  To identify the arm-level changes that most significantly differentiated between 
the resulting major tissue clusters, we utilized the Comparative Marker Selection Tool 24 
available in the GenePattern Software Suite 25 
(http://www.broad.mit.edu/cancer/software/genepattern/), using the signal-to-noise test 
statistic (Supplementary Table 6). 
 
6. Identification of Recurrent Focal SCNAs 
 
Significantly recurrent focal SCNAs were identified using the GISTIC methodology 19, 
with three improvements described below (and to be described in greater detail in 
Mermel et al, in preparation). The motivation behind GISTIC is to identify regions where 
SCNAs are observed significantly more frequently than the background rate.  In the 
absence of independent estimates of the background rate, the previous version of GISTIC 
used the overall frequency of SCNAs across the genome, taking in account the amplitude 
of copy number change.  In part, the improvements described below make use of the 
large number of segments available in this dataset to refine our estimates of the 
background rate of SCNA to more accurately reflect its dependence on both amplitude 



and length. It should be noted that the existence of widespread positive or negative 
selective pressure may lead to inaccurately high or low estimates of this background rate.  
Indeed, as described in the main text, the finding that deletions tend to preferentially 
avoid gene-dense regions (Figure 2b) is consistent with the presence of widespread 
negative selective pressures that may lead us to underestimate the background rate of 
deletion.   
 
A. Scoring of the Genome 
 
Optimally, each marker should be scored (GISTIC uses the “G-score”) by the probability 
of undergoing all the events observed at that marker—either by multiplying the 
probabilities of each event, or (as is the procedure in GISTIC) adding the logs of those 
probabilities. With the large dataset available in the current study, we have been able to 
revise the scoring scheme to reflect these probabilities more accurately. The probability 
of a marker undergoing a focal SCNA appeared to be approximately equal for SCNAs of 
all lengths up to the level of a chromosome arm because the frequency of longer SCNAs 
was inversely proportional to their length (Figure 1a).  Therefore, we did not include a 
length term in the G-score, other than to separate arm-level SCNAs. We found both 
amplifications and deletions to be exponentially less frequent with increasing amplitude 
(measured as number of copies); therefore we scored each SCNA proportional to its 
amplitude. We also found focal deletions (not amplifications) were less frequent in 
regions with arm-level deletions in the same sample; these were therefore scored with 
more weight. 
  
Another possible factor determining the background rate of SCNAs is the presence of 
repeat sequences or segmental duplications. Recombination of homologous DNA 
sequences such as segmental duplications has been posited to be a mechanism by which 
focal SCNAs are generated 26. Although we did observe a statistically significant 
enrichment of breakpoints in regions of segmental duplication (see Main Text), the 
effects on the distribution of SCNAs across the genome are not clear.  One expectation 
might be that more SCNAs would be observed near centromeres and telomeres, which 
are heavily enriched for repetitive sequences.  We evaluated this by rescaling each 
chromosome arm to a single size and summing copy-number profiles across all samples 
and arms (Supplementary Figure 8).  There was little bias toward telomeric or 
centromeric amplifications.  Some excess of telomeric deletions were observed (at 
approximately 1/3 of the level required to attain significance), but we did not observe 
excess centromeric deletions.  Due to the small magnitude of these effects and the 
uncertainty as to their source, we did not account for them in our model of the 
background rate. 

 
An additional modification was implemented for the deletions analysis to account for the 
fact that deletions affecting any part of a gene are likely to have similar functional 
consequences.  In this new approach, termed ‘Gene-GISTIC’, each gene (rather than SNP 
marker) is given a single G-score reflecting the maximal level of deletion seen anywhere 
in that gene, summed over all samples.  One complication is that genes with more SNPs 
are more likely to score higher by chance alone. Gene-GISTIC corrects for this by using 



G-scores generated from similar-sized windows in permuted data as the null distribution 
when calculating significance values (to be described in detail in Mermel, et al, in 
preparation). 
 
The Gene-GISTIC approach provides a more accurate weighting of the significance of 
genes subject to frequent but non-overlapping deletions and an increase in overall power 
due to a reduction in the number of independent hypotheses tested (from the total number 
of markers on the array to the number of genes in the genome).  A direct comparison of 
the results of Gene-GISTIC and the traditional SNP-based GISTIC deletions analysis 
found 82 peaks by Gene-GISTIC compared to 64 by SNP-GISTIC; 62 peaks overlapped 
(Supplementary Table 7). Known tumor suppressor genes tended to rank higher in the 
Gene GISTIC results (not shown). One potential drawback to the Gene-GISTIC approach 
is that regions without known genes (RefSeq genes and miRNAs were included in this 
study) will not be scored and potentially significant deletions may be missed.  Indeed, 11 
peaks were more significant according to SNP-GISTIC than Gene-GISTIC 
(Supplementary Table 7), likely due to the underweighting of deletions occurring outside 
of known genes. 
 
B. Peak Region Identification 
 
To identify independently significant regions in a single chromosome, GISTIC employed 
a greedy “peel-off” algorithm approach that identifies the most significant peak, removes 
all SCNAs spanning that peak, and then rescores the chromosome to identify additional 
significant peaks. We have modified the algorithm to increase the sensitivity for 
additional peaks. SCNAs are allowed to contribute to secondary peaks with a weighting 
proportional to the evidence that the secondary peak represents a separate event from the 
primary peak. In brief, after removing the SCNAs overlapping the primary peak, the next 
highest-scoring peak is identified. “Disjoint G-scores” for both the primary and 
secondary peaks are calculated based only on SCNAs that overlap one or the other peak 
but not both. SCNAs that overlap both peaks are then allowed to contribute to each peak 
with a weighting proportional to the disjoint G-score of that peak divided by the sum of 
disjoint G-scores over both peaks, and the significance of each peak is redetermined. The 
procedure is performed iteratively until no further significant peaks are identified. The 
modification improves the sensitivity of the method for identifying known cancer genes 
without substantially decreasing its specificity (to be described in detail in Mermel et al, 
in preparation). 
 
C. Peak Region Boundary Determination 
 
We have also modified the method employed by GISTIC to define the boundaries of each 
peak region, to add an explicit accounting for the likelihood passenger events or other 
sources of noise have displaced the local G-score peak from the gene target 
(Supplementary Figure 3d). The variations in G-scores across the genome in permuted 
data are tabulated to determine the likelihood of observing any given change in G-score 
(ΔG) over any given distance. We set the boundaries of each peak region such that the 



decrease in the G-score from peak to boundary had a likelihood of 5% or less, 
representing the 95% confidence interval for inclusion of the gene target. 
 
7. The effect of gene size and density on observed SCNA frequency 
 
To determine whether large genes are associated with peak regions of amplification or 
deletion, we ranked genes according to the genomic footprint of their coding sequence, 
defined as the largest difference between transcription start and stop sites over all 
annotated transcripts in genome build hg18.  We computed the local gene density around 
each gene by counting the number of annotated genes residing within a 4 Mb window 
centered around the midpoint of the gene and dividing by the average number of genes in 
the 4 Mb window around all genes in the genome. 
 
To determine the relationship between SCNA frequency and gene density, we first 
discretized each copy number profile based on the following 7 copy number ranges: < 1, 
1-1.5, 1.5-1.75, 1.75-2.3, 2.3-3, 3-4, and > 4.  The gene density within each of these copy 
number ranges was calculated by dividing the total number of genes residing within each 
copy number bin across all samples by the number of SNP markers covered by those 
regions; these density values (in genes per SNP; similar values were obtained using genes 
per Mb) were normalized against the average gene density across the genome in Figure 
2b.  We computed the significance of deviations from the average gene density by 
comparing the gene density for each copy number bin to the distribution of gene densities 
in 1e6 random permutations of identically sized regions across the genome.  The green 
lines in Figure 2b correspond to the gene densities giving Bonferonni-corrected p-values 
of .01.  These lines spread outward at extreme copy numbers because the number of 
segments residing within these bins is smaller.  
 
8. GRAIL Analysis 
 
To compare the functional relatedness of the genes identified by our focal SCNA 
analysis, we utilized the GRAIL algorithm 27 (full methods and algorithm available at 
www.broad.mit.edu/mpg/grail) on amplification and deletion peak regions separately, 
using the default parameters. In brief, GRAIL determines the relatedness between any 
two genes in different peak regions based upon the frequency with which the same terms 
are found in PubMed abstracts citing each gene (all PubMed abstracts until December 
2006 are used). Each gene is scored by its level of relatedness to all genes in all other 
peak regions, and assigned a p-value reflecting the likelihood of achieving such a score 
by chance. Each peak region is assigned the p-value of its most significant gene with a 
multiple hypothesis correction to reflect the number of genes in the peak. The literature 
terms most associated with the top genes in each peak region are noted. To confirm the p-
values assigned to the peak regions were not overestimates of significance, we compared 
them to similar p-values generated using 1000 permutations of the locations of the peak 
regions (“permuted controls” in Figure 2c). 
 
9. GO Term Analysis 
 



The latest Gene Ontology annotations were downloaded from The Gene Ontology 
website (http://www.geneontology.org/GO.downloads.ontology.shtml).  We associated 
each GO term with all genes that are annotated with that term or any of its descendent 
terms in the GO hierarchy.  We assessed enrichment of each GO term by comparing the 
number of genes associated with that term and present in our amplification and deletion 
peak regions to the number expected if these genes were distributed at random across the 
genome.  Peak regions with greater than 25 genes were eliminated from the analysis to 
maximize power, and at most 2 genes from each peak region were allowed to count 
towards the enrichment score to eliminate confounding due to genomic clustering of 
close homologues.  GO terms with fewer than 10 associated genes were excluded from 
the analysis to avoid significant enrichments based only on very small numbers of genes.  
The significance of the enrichment for each peak was calculated using the G-test, with an 
FDR correction to account for the number of hypotheses being tested. 
 
 
10. Peak Region Overlap 
 
To quantify the degree of overlap among peak regions identified in different datasets, we 
counted two peaks as being the same if their 95% confidence intervals overlap.  P-values, 
representing the likelihood of obtaining the observed levels of overlap if peak regions 
were randomly distributed, were determined by permuting the locations of the peak 
regions in each dataset 1,000 times and determining the fraction of peaks that overlap in 
each permutation. 
  
To count the total number of non-overlapping peak regions identified across all cancer 
sets, we first removed peaks that overlapped with any of the 158 peaks in the pooled 
analysis. The remaining peak regions were sorted by size (smallest to largest); starting 
with the smallest peak, we examined each peak for overlap with any smaller peak. If 
overlap was observed, the larger of the two peaks was removed. 
 
11. Fluorescence in-situ hybridization (FISH)   
 
Four-micron tissue microarray (TMA) sections were mounted on standard glass slides 
and baked at 60°C for at least two hours, then de-paraffinized and digested using methods 
described previously 28. 
 
The following DNA probes were co-hybridized: RP11-54A4 (SpectrumGreen), which 
maps to 1q21.2 and includes MCL1; D1Z5 (SpectrumOrange), which maps to 1p11-q11 
(SpectrumOrange); and D11Z1 (SpectrumAqua), which maps to 11p11.11-q11.11.  The 
D1Z5 and D11Z1 probes were purchased from Abbott Molecular/Vysis, Inc. The MCL1 
probe was obtained from CHORI (www.chori.org), direct-labeled using nick translation 
and precipitated using standard protocols. Final probe concentration was approximately 
50-100 ng/ul. D1Z5 and D11Z1 final probe concentrations followed manufacturer's 
recommendations. 
 



TMA sections and probes were co-denatured, hybridized at least 16 hrs at 37°C in a 
darkened humid chamber, washed in 2X SSC at 70°C for 10 min, rinsed in room 
temperature 2X SSC, and counterstained with DAPI (4',6-diamidino-2-phenylindole, 
Abbott Molecular/Vysis, Inc.). Slides were imaged using an Olympus BX51 fluorescence 
microscope. Individual images were captured using an Applied Imaging system running 
CytoVision Genus version 3.9. 
 
12. Cell culture conditions 
 
NCI-H2110, HCC 1954, HCC 1171, NCI-H1568, NCI-H322, NCI-H1792, SKLU1, NCI-
H647, NCI-H520, NCI-H2228, LCLC-97TM1, PC9, NCI-H1437, and NCI-H3122 cells 
were maintained in RPMI 1640 plus 2 mM L-glutamine (Cellgro) supplemented with 
10% fetal bovine serum (Gemini Bio-Products), 1 mM sodium pyruvate, and 
penicillin/streptomycin (Cellgro). For A549 and Calu6 cells, F12K and DMEM 
respectively were substituted for RPMI. Immortalized lung epithelial cells 29 were 
maintained in SAGM small airway cell basal medium with supplements (Lonza). 
 
13. Quantitative PCR 
 
Quantitative real-time PCR was performed with an ABI 7900 HT Sequence Detection 
System (Applied Biosystems) using the QuantiTect SYBR Green kit (Qiagen). Copy-
numbers were quantified relative to the repetitive sequence element Line-1 as previously 
described 30.  For MCL1, the forward and reverse primer sequences were 
CTTCCAAGGTAAGGGGGTTC and ACTGACTCGTTTCGGTTTCC, respectively; for 
BCL2L1 the forward and reverse primer sequences were 
CCTCTCCCGACCTGTGATAC and CTTCCTCGGAAAGTCACTCC, respectively. 
 
14. RNAi and cDNA expression 
 
Inducible shRNA vectors were generated as previously described 31 using sequences 
targeted against MCL1 (GCATTGGCATCTTTGGATTTC) and scrambled control 
(GTGGACTCTTGAAAGTACTAT) 32. Stable shRNA vectors were provided by The 
RNAi Consortium 33 and sequences were inserted to target MCL1 
(GCTAAACACTTGAAGACCATA, GGATTGTGACTCTCATTTCTT, and 
GCAGGATTGTGACTCTCATTT), and BCL2L1 (CGTGTCTGTATTTATGTGTGA, 
CCACCAGGAGAACCACTACAT, and TGGCCTCAGAATTGATCATTT),  as well 
luciferase and LacZ (CGCGATCGTAATCACCCGAGT and 
CTCTGGCTAACGGTACGCGTA) controls. Lentiviruses were made by transfection of 
293T packaging cells with a three plasmid system 34,35. Target cells were incubated with 
lentivirus for one hour in the presence of 8 µg/ml polybrene. Infections leading to >30% 
decreases in proliferation due to viral toxicity were repeated at lower titer. Cells were 
selected using puromycin at 2 mg/ml over 2-3 days or until all of the non-infected cells 
died. 
 
Knockdown of MCL1, ADAMTSL4, CTSK, CTSS, ECM1, ENSA, GOLPH3L, and a non-
targeting control  was also achieved by transfection with siRNA siGenome SMARTpools 



(Dharmacon), and the single sequence #13 (GAUUGUGACUCUCAUUUCUUU) from 
the MCL1 SMARTpool as previously described 36. 
 
Retroviral vectors were used to introduce specific genes into immortalized lung epithelial 
cells 37. MCL1 and BCL2L1 cDNAs were each introduced into pWZL-BLAST; MYC 
cDNA was introduced into pBABE-Puro. 
 
15. Cell proliferation assays 
 
Proliferation of cells in inducible MCL1 knockdown experiments was measured using the 
xCELLigence RTCA machine (Acea Biosciences). Cells were seeded at 1500 cells/well 
in 96-well plates and doxycycline (100 ng/ml) or vehicle control was added after 24 
hours. Electrical impedence was measured every 30 minutes for 48 hours post-induction. 
Each measurement was performed in triplicate on at least two separate occasions. 
Proliferation of cells in all other experiments was measured using CellTiterGlo reagent 
(Promega). with measurements taken at 0 and 48 hours post-infection or -transfection (for 
MCL1 shRNA and siRNA experiments, respectively) or at 3 and 7 days post-infection 
(BCL2L1 shRNA experiments). Cell proliferation assays performed on cells infected with 
stable shRNA vectors were performed immediately after lentiviral infection, in parallel 
on aliquots treated with and without puromycin. The data presented represent cells not 
treated with puromycin, although similar results obtained in both cases (data not shown). 
 
16. Xenografts 
 
Female nu/nu mice maintained in pathogen-free facilities were implanted subcutaneously 
with 5e6 cells infected with inducible shRNA vectors against MCL1 or scrambled 
control. Tumor size was assessed by calipers twice weekly. When tumors reached 100 
mm3 (11 days post-implant), eight mice in each group were fed doxycycline 25 mg/kg po 
qd and eight additional control mice were fed D5W for an additional 11 days. 
 
17. Immunoblot analysis 
 
Both adherent and floating cells were harvested after incubation overnight and lysed 
using 2x SDS sample buffer (125 mM Tris-base, 138 mM SDS, 10% β-mercaptoethanol, 
20% glycerol, bromophenol blue, pH 6.8). Lysates were boiled for 10 min., cleared of 
insoluble material by centrifugation at 16,000 x g, and subjected to SDS-10% 
polyacrylamide gel electrophoresis (PAGE). Blots were probed with antibodies against 
MYC (ab32, Abcam), MCL1 (ab32087, Abcam), BCL2L1 (2762, Cell Signaling), 
cleaved PARP (9541, Cell Signaling), GAPDH (MAB374, Chemicon), and actin 
(ab8227, Abcam). 
 
18. Flow cytometry 
 
Adherent and floating cells were harvested after incubation overnight and stained with 
Annexin V-FITC (Sigma) and propidium iodide (BioVision). Flow cytometric analysis 
was performed on 3e4 cells using the BD LSR II flow cytometer (BD Biosciences). 



 

Supplementary Note 1: Background and Terminology 
 
a) Somatic vs. Germline Copy Number Changes 
 
Throughout this paper, we use the term somatic copy number alteration (SCNA) to refer 
to somatic changes in the number of copies of a DNA sequence that arise during the 
process of cancer development.  SCNA should not be confused with two similar terms, 
copy number variation (CNV) and copy number polymorphism (CNP), which refer to 
copy number changes in DNA segments present in an individual’s germline DNA.  
Definitions of these terms, as used throughout the manuscript, are as follows: 
 
Somatic Copy Number Alteration (SCNA):  A sequence that is found at different copy 
numbers in an individual’s germline DNA and in the DNA of a clonal sub-population of 
cells. 
 
Copy Number Variation (CNV):  A DNA sequence that is found at different copy 
numbers in the germline DNA of two different individuals.   
 
Copy Number Polymorphism (CNP): A locus that exhibits CNV above some specified 
frequency (typically 1-5%) among individuals within a population.   
 
Because not all of the cancer DNA specimens in our dataset are matched to normal DNA 
specimens, we cannot be entirely confident that any given copy number change observed 
in a cancer DNA sample was not present in the germline of the patient.  To avoid 
confounding our analysis of somatic CNAs with germline CNVs, we have masked from 
our dataset all markers covering previously annotated CNPs 22, as well as those markers 
found to be altered in at least 1% of the normal samples in our dataset (see 
Supplementary Methods, above). 
 
The amplitude of copy number change 
 
In the cytogenetics literature, “gains” has traditionally referred to increases of one or a 
small number of copies of a DNA segment, typically spanning a large genomic region. In 
contrast, “amplifications” has referred to more focal events that can reach much higher 
copy numbers.  A similar distinction has been made between “losses” and “deletions”.  
Current analytical methods do not allow the determination of absolute copy number from 
array-based platforms, rendering these distinctions less clear.  For consistency, we refer 
to arm-level events as “gains” or “losses” because of their large genomic extent and 
tendency to involve limited copy number changes, and focal events as “amplifications” 
and “deletions” due to their more limited extent and propensity to reach higher copy 
numbers.   
 
b) Background Rates and Selection of SCNAs 
 



Oncogenesis is an evolutionary process 38. DNA alterations are acquired at random 
according to a rate of generation that is determined by the competing processes of 
mutation and repair, and which may vary according to the type of aberration and the 
genetic and cellular context. Once acquired, these alterations may be neutral, or may be 
subject to positive selection (if they promote oncogenesis) or negative selection (if they 
have deleterious effects on the cell). In the absence of selective pressure, an alteration 
will be observed at a “background rate” equal to its generation rate times the number of 
cell divisions. The frequency with which an alteration is observed in cancer specimens is 
determined by both this background rate and the degree of selective advantage or 
disadvantage it confers.  
 
Alterations that promote oncogenesis (often referred to as “driver events”), in particular, 
should be present at above the background rate.  Alterations that do not contribute to the 
cancer phenotype (often referred to as “passenger events”) may nevertheless be observed 
in the bulk of a cancer sample if a subsequent beneficial alteration (driver event) provides 
the cell a net fitness advantage.  This process is often referred to as “hitch-hiking” 39.  
Indeed, even somewhat deleterious alterations may achieve fixation through hitch-hiking 
if the subsequent driver events confer a net fitness advantage to the cell.  The process by 
which a cell is able to reach fixation through a less fit intermediate has been described as 
“stochastic tunneling” 40.  The result of hitch-hiking and stochastic tunneling is that many 
alterations observed in cancer genomes do not promote oncogenesis. 
 
Systematic efforts to discover all oncogenic somatic genetic alterations therefore require 
both an accurate model of the background rate and a sufficiently large collection of 
cancer samples to provide sufficient power to detect  alterations occurring above this 
frequency 19,41,42,43. For point mutations, reasonable estimates of the background rates are 
provided by the synonymous and intergenic mutation frequencies, which are believed to 
be selectively neutral 44. By contrast, no clear distinction has been defined between 
selected and neutral SCNAs, making precise estimation of the background rates difficult. 
A common approach to making these estimates is to assume the background rates are 
similar to the overall rate of SCNA within each chromosome 45,46 or across the entire 
genome 19,47.  
 
While this approach of estimating the background mutation rate from the observed data is 
statistically unbiased, the fact that the observed data has already been subjected to a 
selective process in vivo makes it is impossible to precisely distinguish between variation 
due to differences in mutation rates from variation due to differences in the level of 
selective advantage or disadvantage conferred by each mutation.  An additional 
complication is that the background rate estimated from the data will also include false 
positive events (due to technical noise from the measuring platform) and false negative 
events (that occur below the detection limit of the measuring platform).  Therefore, 
somatic alterations may appear to occur at a significantly elevated frequency across 
samples for at least four reasons: (i) they are generated in that region at a rate 
significantly above the genome-wide average, (ii) they occur in a region subject to 
significantly less negative selection than the typical genomic region, (iii) they give a 
selective advantage to cells harboring them (i.e. they are driver alterations), or (iv) they 



represent systematic artifact.  While the statistical background rate estimated from the 
observed data is useful in the identification of regions altered at statistically significant 
frequencies – potentially suggesting the presence of positive selection –  one should not 
simply equate this rate with the biological background mutation rate, or assume that all 
mutations occurring at an elevated frequency are drivers.  Conversely, one should not 
assume that all mutations occurring at rates equal to or lower than the estimated 
background rate are passengers. 
 
The interpretation of the significance of a frequent mutation therefore depends on our 
understanding of its particular background rate.  This rate may vary according to specific 
features of the mutation, such as the type of base pair substitution for point mutations or 
the length, magnitude, and surrounding sequence for copy number alterations.  Naïve 
analyses which do not account for these features – by assuming, for example, that SCNAs 
are equally likely to occur anywhere in the genome or to be of any size – will be biased 
towards regions with high background mutation rates and away from regions with low 
background mutation rates.  For example, it is known that point mutation rates vary 
significantly according to the type of substitution (e.g. transition vs. transversion) and 
sequence context (e.g. CpG vs. non CpG); various statistical methods for the analysis of 
point mutations take this variation into account to avoid biasing the results towards genes 
or regions with many mutable bases 41,42,43.  The background mutation rate may also be 
underestimated if many mutations confer negative selective pressure and therefore are 
observed less commonly than they occur.  In this case, a neutral mutation observed at the 
true background rate may appear to be significantly enriched in cancer. 
 
One of the goals in the analysis of SCNAs is to identify features that correlate with the 
frequency with which these SCNAs are observed.  Whether these features influence 
SCNA frequencies through mechanistic effects on background mutation rates, through 
selective pressure, or through association with technical artifact should be determined by 
appropriate validation experiments. 
 

Supplementary Note 2: The impact of sample size on focal 
SCNA analysis 
In this paper, we have utilized the large sample collection generated by analyzing DNA 
specimens across multiple cancer types to increase our power to identify and resolve the 
targets of significant regions of focal SCNA.  To understand the effects of sample size on 
the ability to discover targets of focal SCNA, we must separately consider the two critical 
steps in our focal SCNA analysis: 1) identifying that a region is undergoing SCNA 
significantly above the background rate, and therefore is likely be subject to positive 
selection; and 2) given that a region of SCNA is undergoing selection, resolving the 
genomic region most likely to contain the target gene(s).   
 
Step 1: Identifying that a region of SCNA is undergoing positive selection 
 



The GISTIC G-score at each marker locus is constructed to estimate the probability of 
observing the set of SCNAs covering that locus by chance, taking into account both the 
frequency and mean amplitude of SCNA (see Supplementary Methods).  To compute the 
significance of each region, the G-score is compared to the distribution of G-scores 
expected if the SCNAs in the region were all random events generated at the background 
rate. GISTIC estimates this background rate using the overall rate of focal SCNA across 
the genome. 
 
For a focal SCNA occurring at a fixed frequency and average amplitude, the power to 
detect that region generally increases with sample size.  However, the relationship 
between detection power and sample size is complicated by several additional issues.  For 
one thing, combining heterogeneous sample sets can reduce the power to detect SCNAs 
that are primarily enriched in a single subset (by reducing the frequency of the region of 
interest in the combined dataset).  That is, mixing cancer specimens across tissue types 
will diminish the power to detect true lineage restricted SCNAs.  Mixing samples with 
different background rates of alteration can similarly affect the statistical power of the 
combined analysis in ways that obscure the effect of sample size alone.   
 
Across the 17 individual cancer types studied in our dataset, there is a weak but 
significant association between sample size and the number of significant focal SCNAs 
detected (r = 0.51, p = .04; data not shown).   Of course, because the total number of 
‘true’ driver SCNAs in each cancer type is unknown, the number of significant SCNAs 
identified in any given cancer type is not a direct measure of statistical power.  A more 
informative measure of the relationship between sample size and statistical power is 
demonstrated by an analysis of randomly selected subsets of the entire dataset 
(Supplementary Fig 3a).  Since each subset is drawn from the same total dataset, the 
expected frequency and background rate of each subset is, on average, the same.  As can 
be seen, increasing the number of samples increased the number of peaks identified over 
all subset sizes, indicating that our increased sample size led to increased power overall.  
However, it is also clear that the number of peaks appears to be saturating by 3131 
samples, suggesting that adding additional samples will not greatly increase our power to 
detect novel SCNA targets (at least for a similarly composed dataset).  
 
Step 2: Resolving the genomic region most likely to contain the target gene(s) 
 
Once a region of significant focal SCNA has been identified, the next step is to define the 
genomic boundaries likely to contain the target gene(s) of that SCNA.  Most approaches 
to resolving this region directly or indirectly compute the minimal common region 
(MCR) of overlap among the SCNAs covering the significant locus, as this is the region 
most likely to contain a targeted gene.  However, due to both technical and biological 
noise (e.g. segmentation artifacts or random “passenger” SCNAs that confer no selective 
advantage to the cell), the MCR may be displaced from the actual location of the gene 
targets.  We have developed a statistically based approach (see above and Mermel et al., 
manuscript in preparation) that models the expected variations in the G-score using the 
observed level of noise across the genome to determine a wider region than the MCR for 
which we are 95% confident contains the true target gene. 



 
The two major determinants to how narrowly a significant region of SCNA can be 
refined are the size of the MCR due to SCNAs overlapping the target gene (here called 
“driver SCNAs”) and the noise level contributed by SCNAs that do not necessarily 
overlap the target gene (here called “passenger SCNAs”; these may represent real SCNAs 
or analytic artifact).   
 
By definition, the size of the MCR can never increase with the addition of samples 
containing driver SCNAs, and will more typically decrease.  Indeed, under the 
simplifying assumptions that driver SCNA breakpoints are random with a uniform 
distribution between 0 and some maximal distance L units away from a target gene, the 
minimum distance to a breakpoint will scale as 1/(n+1) 48,  where n represents the number 
of samples with driver SCNAs.  This reduces to 1/n when n is large, implying that the 
expected size of the MCR is inversely proportional to the number of samples harboring 
the driver SCNA.  In reality, the assumptions behind this derivation do not hold exactly, 
as there is a minimal observed SCNA length that depends on the resolution of the 
measuring platform, and SCNA breakpoints are likely to be scattered non-uniformly 
across the genome.  Nonetheless, for the vast majority of focal peak regions, the model 
does a reasonably good job of approximating actual MCR sizes in random subsets of the 
dataset (data not shown), suggesting that number of samples remains the major factor 
limiting the resolution of most focal peaks.  The fact that the MCR resolution scales 
inversely with the absolute number of driver SCNAs, rather than the overall frequency of 
aberration, implies that once a region of significant SCNA has been detected, the addition 
of extra samples (even if they contain a low frequency of alteration at a given locus) will 
only help to resolve the target gene.  In particular, doubling the number of samples with 
the driver SCNA will halve the expected size of the MCR. 
 
The relationship between the noise level due to passenger SCNAs and sample size is 
difficult to model as it depends on the particular mix of samples in the dataset as well as 
the underlying error model of the measuring platform and analytical methods.  Insofar as 
the noise around a given locus is unbiased, the errors from additional samples with 
passenger SCNAs will tend to cancel, whereas the signal contributed by samples with 
driver SCNAs will tend to add.  Overall, this will result in more confident boundary 
estimation with greater numbers of samples. In fact, according to the central limit 
theorem, the error in boundary estimation will decrease as 1/√N, where N represents the 
total number of samples (including those with driver and passenger SCNAs).    This 
result, like the one above, suggests that increasing numbers of samples will tend to 
provide more precise estimates of the location of the target gene. 
 
Empirically, we observe that for all but the most frequent regions of SCNA (where we 
are likely saturating the resolution limit of the array), our ability to resolve the target 
region is roughly inversely proportional to the size of a randomly chosen subset (see 
Supplementary Figure 3e), as predicted by the models above.  The median number of 
genes per peak region roughly halves when increasing the sample size from 1600 to 
3131, suggesting that further improvements in resolution could be achieved with further 
increases in the sample size.   



Supplementary Note 3: Data sources 
 
The 250K SNP array data used in this study were obtained from several sources, 
including previously published data from our laboratory1,2,3,4,5,6,7,8,9,13,28,58,68 (Barretina et al, 
in review; Brachmann et al, in preparation; Bass et al, in preparation) and other 
groups10,11,12 and previously unpublished data from cancer and normal specimens 
(Supplementary Table 1).  The published cancer copy-number profiles include 510 non-
small cell lung cancers9,10,13,58,68, 388 acute lymphoblastic leukemias10,11,12, 130 breast 
cancers1,2,10, 215 myeloproliferative disorders8, 151 colorectal cancers10,28, 2 
medulloblastomas10, 111 renal cancers7,10, 106 hepatocellular cancers3,10, 77 melanomas4,10, 
7 ovarian cancers10, 54 prostate cancers6,10, 73 esophageal adenocarcinomas (Bass et al, in 
preparation), 52 dedifferentiated liposarcomas (Barretina et al, in review), 40 esophageal 
squamous cell cancers10,13, 21 gastrointestinal stromal tumors (GISTs; Barretina et al, in 
review), 10 gliomas10, 21 small cell lung cancers10, 36 myxofibrosarcomas (Barretina et 
al, in review), 32 leiomyosarcomas10 (Barretina et al, in review), 31 neuroblastomas5,10, 25 
synovial sarcomas (Barretina et al, in review), 26 mesotheliomas (Brachmann et al, in 
preparation), 24 pleomorphic liposarcomas (Barretina et al, in review), 23 gastric 
cancers10 (Bass et al, in preparation), 4 thyroid cancers10, 21 non-Hodgkin’s lymphomas10, 
and 115 miscellaneous other types of cancer10 (Barretina et al, in review). 
 

Supplementary Note 4: A Pooled analysis of arm-level SCNAs 
 
Several previous studies have analyzed arm-level SCNAs in large numbers of cancer 
samples characterized by low-resolution array or cytogenetic technologies 49,50.  These 
studies have identified arm-level SCNAs observed frequently both within and across 
cancer subtypes.  Moreover, these arm-level SCNAs have been shown to segregate by 
cancer type, with cancers of similar developmental origin showing similar patterns of 
SCNA. 
 
In parallel to our approach to focal SCNAs, we compared frequencies of arm-level SCNA 
to estimates of their background rates.  In many ways, this analysis serves to highlight 
certain broad similarities between arm-level and focal SCNAs.   
 
As with our focal SCNA analysis, our analysis of arm-level SCNAs began with a 
systematic evaluation of the observed rate of these events across the genome.  We 
observed that arm-level alterations are more common in short rather than long 
chromosome arms (Supplementary Figure 6). The correlation is stronger when the length 
of the chromosome arm is measured by number of genes rather than megabases (p = 
0.0005).  This trend is observed in separate analyses of 25 of the 26 cancer types most 
represented in our dataset. The sole exception is hepatocellular carcinoma, which shows 
no trend in either direction—in part due to a very high frequency of amplification of the 
longest chromosome arm, 1q. In 13 of these 26 cancer types, including examples from all 
developmental lineages, this trend reached statistical signficance within a single type 
(data not shown).  Although both focal and arm-level SCNAs exhibit decreasing 



frequency with length, the strength of the trend differs in the two cases.  Several 
possibilities may account for this, including differences in the mechanisms by which 
these SCNAs are generated, the effects of selection, and experimental artifact. 
 
A caveat to this analysis is that we do not distinguish between whole-chromosome and 
single-arm-level SCNAs, although the mechanisms and rates between these may differ.  
Indeed, in separate analyses of these two types of SCNA, both trend towards fewer events 
in SCNAs covering more genes.  However, this trend was significant only for whole-
chromosome SCNAs (p = 0.003), not single-arm-level events (p = 0.28) (data not 
shown).  This may be due to the ambiguities inherent in attempting to separate these two 
types of SCNA: namely, any whole-chromosome SCNA is equivalent to concordant 
SCNAs in both of its arms.  Single-arm-level SCNAs can only be detected when the two 
arms are discordant (as is frequently observed with deletion of 8p and amplification of 
8q).  As a result, fewer single-arm-level SCNAs will be detected, reducing the power 
available to identify significant trends.  Moreover, any SCNA of an acrocentric 
chromosome (chromosomes 13, 14, 15, 21, and 22) is inherently ambiguous, as it is 
simultaneously a whole-chromosome and single-arm SCNA.  For these reasons, we 
present a unified analysis of arm-level SCNAs that includes whole-chromosome SCNAs. 
 
The prevalence of specific arm-level SCNAs, however, is not fully explained by the 
number of genes present in each of these arms. Indeed, the high frequency of specific 
arm-level gains and losses suggests enrichment due to selective pressure, as has been 
noted in many prior publications 50,51,52.  To our knowledge, however, none of these prior 
publications has determined the statistical significance of arm-level SCNA by explicitly 
comparing the frequencies of arm-level SCNAs to the expected rate given their gene 
number (see Supplementary Methods, above).  Across all cancers, 11 of the 39 autosomal 
chromosome arms exhibit copy number gains and 17 exhibit copy number losses 
significantly more often than predicted by the number of genes they contain (Figure 1b; 
see Supplementary Methods). The vast majority of these are strikingly significant, with 
the most prominent being amplifications of 1q, 20q, and 7p (p < 1e-85 in each case), and 
deletions of 17p, 9p, and 13q (p < 1e-33 for each).  Interestingly, the most significantly 
deleted arms contain some of the most frequently mutated tumor suppressor genes, 
including TP53 (17p), CDKN2A/B (9p), and RB1 (13q), suggesting that the striking 
enrichment of loss of these arms may be due largely to these genes (Supplementary Table 
8).  Only nine of the 39 chromosome arms are neither significantly gained nor lost. 
Despite the finding that most chromosome arms exhibit significant gains or losses, only 
one (14q) shows both (p = 0.003). 
  
Indeed, the striking significance of these arm-level SCNAs across cancer reflects a 
directional consistency across many different cancer types. In particular, we analyzed 
arm-level SCNAs separately in each of the 17 cancer types represented by greater than 40 
samples (Supplementary Table 8). The 11 significantly gained chromosome arms 
identified in the pooled analysis were found to be independently gained in a median of 8 
cancer types (range 2-11); these same arms were only rarely found to undergo significant 
loss in any cancer type (median 0, range 0-2 types). Similarly, the 17 significantly deleted 
arms in the pooled analysis were found to be independently lost in a median of 4 cancer 



types (range 2-9), and were only sporadically gained in specific subtypes (median 1, 
range 0-2 types; note that these gains were predominantly seen in hematopoietic cancers). 
Chromosome 14q, the only arm found to be both gained and lost in the pooled analysis, 
was significantly gained in 4 cancer types (acute lymphoblastic leukemia, non-small cell 
lung carcinoma, small cell lung cancer, and prostate carcinoma) and lost in 3 cancer types 
(GIST, melanoma, and renal carcinoma). The mutually exclusive gains or losses observed 
for nearly all chromosome arms across large numbers of cancer types suggest that the 
selective pressures that shape these events operate in tissues throughout the body rather 
than being confined to limited, tissue-specific microenvironments. 
 
We were also interested in the extent to which the significant arm-level SCNAs are 
shared across tissue boundaries.  Prior studies have shown many arm-level SCNAs to be 
prevalent in multiple cancer types 50,51,52.  We compared the arm-level SCNAs identified 
as significant in each of the 17 well-represented cancer types to those identified in their 
“complement” (i.e. the entire dataset excluding the cancer type in question).  Similar to 
focal SCNAs, we observed that the large majority (median of 87%) of the arm-level 
SCNAs identified in any cancer type were also significant in the complement (versus 
37% overlap expected by chance). Across all the cancer types, we identified 26 ‘lineage-
restricted’ events not found in the complementary pooled analysis (19 arm-level gains 
and 7 arm level losses), for an average of 1.6 new arm-level SCNAs per tissue type 
(range 0-7). Nine of these arm-level gains are identified exclusively among hematopoietic 
cancers. These lineage-restricted arm-level SCNAs may reflect important lineage-specific 
biology. An interesting example is 13q, which is frequently lost across most cancer types, 
but is gained in 50% of colorectal cancers, possibly due to the oncogenic effects of CDK8 
and the unique requirement for intact RB1 (both on 13q) observed in colorectal cancer 
28,53. Chromosome 2 is the only chromosome not significantly altered in at least one 
cancer type. 

Supplementary Note 5: Comparison of focal peak regions to 18 
prior publications 
 
To compare our focal peak regions to the results of prior high-resolution cancer copy-
number analyses, we compared these regions to a set of 18 publications which reported 
copy-number regions of interest determined through the use of oligonucleotide arrays on 
at least 40 samples within any of the 17 major cancer types in our dataset 
1,4,6,7,11,19,54,55,56,57,58,59,60,61,62,63,64,65. 
  
Among the 76 peak regions of amplification reported here, 18 had not been identified in 
any of the prior publications (Supplementary Table 3). For each region of interest, most 
of these publications reported the minimal common region of overlap across their sample 
set; here we report a more conservative peak region that is much wider than the minimal 
common region of overlap to account for the effects of biological and technical noise. 
Nevertheless, of the 58 amplified regions identified in both this study and at least one of 
the prior 18 publications, 33 were found to be narrower (and therefore better-resolved) in 
the present analysis. The size of these regions was a median of 30% of the minimum size 
of the overlapping regions of interest in any of these prior 18 publications.  For example, 



the peak region including GRB2 was identified in one of these 18 publications, but is only 
2% of the size of the region in that publication, engendering a much greater ability to 
focus in on GRB2 as a possible target.  Indeed, GRB2 is a member of the molecular 
adaptor family of genes, which we find to be highly enriched among the peak regions of 
amplification (see Main Text) and, although not known to be an oncogene, is known to 
play a central role in cancer cell cycle and motility 66. 
 
Among the 82 peak regions of deletion reported here, 18 had also not been identified in 
any of the prior publications. Our deletion analysis was performed at gene-level 
resolution to achieve greater power in detecting non-overlapping deletions affecting large 
genes (see Supplementary Methods), whereas all the prior publications extended to 
marker-level resolution. Nevertheless, among the 64 regions identified in both this study 
and at least one of the prior publications, 21 were found to be narrower in the present 
analysis, with a median size of 10% of the minimum size from the prior publications. A 
more comparable marker-level analysis of our data (SNP-GISTIC, see Supplementary 
Methods) exhibited narrower peak regions than in 73% of those regions that had been 
previously reported (data not shown).  
 

Supplementary Note 6: Tissue-type clustering of arm-level and 
focal SCNAs   
 
We were interested in examining how the SCNAs identified in the pooled analysis vary 
across individual cancer types, focusing on the 26 cancer types represented by at least 20 
samples in our collection. Some of the arm-level SCNAs occur at very high frequencies 
within individual subtypes (Supplementary Figure 7a). Indeed, 13 of the 26 cancer types 
exhibited at least one arm-level SCNA that was present in the majority of samples of that 
tumor type. By contrast, focal SCNAs were rarely present in the majority of samples of a 
given cancer type, with only 6 of 26 types exhibiting a focal SCNA present in a majority 
of samples. 
 
We were also interested in quantifying the extent to which arm-level and focal SCNAs 
are shared between cancers of similar developmental lineage. Prior studies have 
demonstrated a tendency for cancers of similar developmental lineage to cluster together 
on the basis of overall copy number 67, but did not separate out the contributions of these 
two types of events.  Therefore, for each cancer type, we generated an aggregate SCNA 
profile by subtracting the frequency of loss from the frequency of gain for each 
significant arm-level and focal SCNA.  We then clustered the resulting “consensus” 
SCNA profiles for each cancer type.   
 
This particular clustering metric attempts to capture the net balance of arm-level changes 
rather than their absolute frequency; for example, a tumor type with 50% gains and 50% 
losses of a particular locus would receive the same score as a tumor type with no gains or 
losses of that locus.  However, the clustering results were largely robust to the use of 
alternative clustering metrics, including scoring each cancer type according to the 
absolute frequency of gain and loss at each locus, and different clustering parameters 



such as complete vs. average linkage and Euclidean vs. Correlation Distance metrics.  
Also, the high degree of variability within cancer types suggests that this analysis will be 
influenced by the particular sampling of cancers within each type.  For this reason we 
restricted the analysis to cancer types with >20 tumors (most were represented by >45 
tumors) and looked for general features driving the major clusters rather than the specific 
placement of each cancer type. 
 
Hierarchical clustering of cancer types based on arm-level SCNA profiles 
(Supplementary Figure 7b) revealed a pattern that closely mimicked the developmental 
lineage of the tissue types. Three major sub-clusters are readily apparent: a major division 
between hematopoietic cancers and all other cancer types, followed by a division 
between epithelial and non-epithelial solid tumors. Within these latter two groups, there 
are distinct sub-clusters of related tumors, including gastrointestinal (gastric, esophageal 
adenocarcinoma, and colorectal), gynecologic (ovarian, breast), sarcomas (plus renal 
cancer), and neural tumors (plus non-Hodgkin’s lymphoma). The segregation of cancer 
types by developmental lineage is highly non-random (p < 1e-5; see Supplementary 
Methods), and more consistent than the previous attempts using overall SCNA profiles 49. 
Specific arm-level SCNAs that distinguish these major subclusters, such as gain of 
chromosome arm 8q and loss of 17p in epithelial tumors, were identified through 
comparative marker selection analysis 24 and are listed in Supplementary Table 6. 
 
In contrast, hierarchical clustering of cancer types based on focal SCNAs does not 
recapitulate developmental lineage as closely (Supplementary Figure 7c). Although there 
was a tendency for tumors of similar lineages to cluster together (p = .01), all three major 
clusters contained several representatives of each lineage. Consistent with this 
observation, the ten most significant amplified regions (Supplementary Figure 7d, top 
panel) and deleted regions (Supplementary Figure 7d, bottom panel) frequently exhibit 
significant levels of focal SCNA in cancers across diverse lineages. For example, both 
EGFR and MDM2 amplifications are frequently observed in gliomas (neural) and non-
small cell lung cancers (epithelial), but not in medulloblastomas (neural) or small cell 
lung cancers (epithelial). 
 
The finding that arm-level CNAs, but not focal CNAs, appear to cluster predominantly 
on the basis on developmental lineage suggests that developmentally encoded selective 
pressures shape the pattern of these events within specific cancer types.  By contrast, such 
pressures appear to be less important in shaping the pattern of focal CNAs observed 
within and between individual cancer types. 

Supplementary Note 7: How to use the cancer copy number 
web portal 

The cancer copy number portal accompanying this paper 
(www.broadinstitute.org/tumorscape) was designed to facilitate interpretation of this 
copy number dataset for the general research community.  In addition to allowing 
download and visualization of both the raw and segmented copy number data, we have 
integrated a web service that allows for rapid querying of pre-processed analyses of the 



copy number data for all the well-represented cancer subtypes in the dataset, as well as 
several defined aggregated datasets (such as all cancers, all epithelial cancers and all 
sarcoma cancers). 

At present, there are two primary modes for querying these analyses: by gene and by 
cancer type.  Below, we summarize the typical use case for each of these modes and 
present an outline for how to approach and interpret the portal data. 

1) By Gene Analysis: 
The “By Gene” analysis mode is designed to quickly summarize the evidence that 
any given gene is the target of SCNA within a given cancer subtype.  It is based 
on GISTIC analyses of 17 individual cancer types and an additional 6 aggregated 
datasets, as described in the Supplementary Methods above. 
 
To access, first click on the ‘Analyses’ tab on the navigation bar on the left side of 
the portal, then click on the ‘by Gene’ sub-tab.  Enter the HUGO gene symbol 
(e.g. KRAS, MYC, CDK4) of any Refseq gene, then hit “Search”.  After a few 
seconds, the results from your gene should be loaded.  You will see three tabs 
(“Summary”, “Amplifications”, and “Deletions”), followed by the gene symbol 
you queried and its genomic coordinates (in genome build hg18).   
 
Below that, you will see two paragraphs separately summarizing the evidence for 
that gene being a target of amplifications (first paragraph) and deletions (second 
paragraph).  The first sentence of this summary paragraph states whether or not 
the gene is significantly amplified or deleted across the entire cancer copy number 
dataset, and whether or not the gene is present within a peak region of 
amplification or deletion in the entire dataset.  A gene may be significantly altered 
but fail to reside within the peak region of alteration; although we cannot rule out 
the possibility that the gene is targeted by focal SCNAs, the fact that it is not in 
the peak region means that there is greater evidence for at least one other region 
on the same chromosome.  Conversely, a gene may reside in a peak region of 
alteration but be insignificantly altered; this is usually due to an inability to 
confidently resolve the peak region and provides very little evidence that the gene 
is an actual target of SCNA.  For genes that lie within a peak region of alteration, 
the number of additional genes in that peak are also listed; the fewer the genes in 
the peak, the more likely it is that that gene is the actual target. 
 
After the summary for the entire cancer dataset, we provide a summary of the 
results across the different independent cancer subtypes.  In particular, we list the 
number of independent subtypes in which that gene was significantly altered and 
the number of subtypes in which the gene was located in a peak region of 
alteration.  Because looking across many different datasets increases the 
likelihood that a gene will be in a peak region by chance alone, care must be taken 
before interpreting the significance of these numbers.  For comparison, we list the 
fraction of genes in the genome which are significantly altered or located in a 
peak region of alteration in at least as many subtypes as the current gene of 



interest.  This allows some estimation of the likelihood that the gene in question is 
a false positive arising due to the number of hypotheses being tested. 
 
To see more detailed information on the Amplifications or Deletions affecting this 
gene, click on the “Amplifications” or “Deletions” tab above the summary 
statements.  This will load a table of the GISTIC results, where each row 
corresponds to one of the analyzed subsets.  The rows are color-coded to quickly 
summarize the significance of SCNA for that gene and whether it is located in a 
peak region.  For each row, we list the coordinates of the nearest peak region in 
that subtype (this will include the gene if it is located within a peak region) along 
with the number of genes in the peak and the false-discovery rate (FDR) q-value 
for the queried gene.  The smaller the number of genes and the smaller the q-
value, the more likely it is that the given gene is actually the target of SCNA in 
that cancer type.   Note that when there are no peak regions identified in the 
chromosome in question in a cancer type, no peak region is listed and the number 
of genes is set to 0 by default. 
 
We also list three different measures of the frequency of SCNA for the gene in 
each cancer type.  Overall frequency measures the fraction of cancers that exhibit 
any SCNA at that gene. Focal frequency measures the fraction of cancers that 
exhibit SCNAs spanning less than half a chromosome arm in length. High-level 
frequency measures the fraction of cancers that exhibit SCNAs of greater than 1 
copy. All these numbers are likely to be underestimates due to the effects of 
contaminating normal cells in many of the cancer samples and the limited 
resolution of the copy number platform. 
 
There are several additional navigation features that can be unveiled by clicking 
on various parts of the table.  Clicking on any underlined cancer subtype name 
will take you to the “By Cancer Type” analysis page for that subtype (see below).  
Clicking on the underlined coordinates for any peak region will open the copy 
number data in that region for that cancer type in the integrated genome viewer 
(IGV) (Robinson et al, in preparation).  Finally, clicking anywhere else in any row 
with at least 1 gene in the nearest peak region will cause the gene symbols for the 
all genes in that peak to be listed in the sidebar to the right of the table.  Clicking 
on any gene in this sidebar will load the “By Gene” analysis page for that gene.  

2) By Cancer Type Analysis 
 

The “By Cancer Type” analysis mode is designed to quickly summarize the 
significant regions of focal CNA within each cancer subtype.  It is based on the 
same GISTIC analyses of 17 individual cancer types and an additional 6 
aggregated datasets, as described in the Supplementary Methods and “By Gene” 
analysis section above. 
 
To access, first click on the “Analyses” tab on the navigation bar on the left side 
of the portal, then click on the “By Cancer Type” sub-tab.  By default, the 



“all_cancers” subtype (representing all 3,131 cancer DNA samples present in our 
dataset) is selected first.  By convention, aggregated tumor subsets are denoted by 
the prefix “all_” to distinguish them from individual cancer subtypes. To select a 
new cancer subtype, simply click the down arrow next to the name of the cancer 
type, select the cancer type of interest from the drop-down list, and hit “Search”.  
After a few seconds, the data from that cancer type should be loaded. 
 
The first tab you will see is the “Summary” tab, which contains a summary of the 
samples comprising the selected subset.  In particular, we list the total number of 
DNA samples and cell lines for each subtype contained within that subset; for 
aggregated datasets, we also list the total number of samples and subtypes 
contained within the subset.  Finally, we list the number of peak regions of focal 
SCNA identified in the dataset. 
 
To view the regions of SCNA in more detail, click on the “Amplifications” or 
“Deletions” tab.  This will load a table of the GISTIC results for that subset, 
sorted from most to least significant according to the FDR q-value.  For each 
significant region of SCNA (represented by a single row in the table), we list the 
genomic coordinates of the peak region boundaries, the number of genes 
contained in the peak, the residual q-value for that peak (a measure of the 
likelihood that the peak was falsely discovered), and three different measures of 
the frequency of that event (as in the “By Gene” analysis described above).  Note 
that the residual q-value for a peak will tend to differ from the overall q-value for 
genes in that peak, for two reasons: 1) the peak region may extend over genes 
with varied q-values, and 2) unlike the overall q-value, the residual q-value 
accounts for the possibility that a single SCNA may extend across more than one 
peak region by penalizing each of those peak regions (see Supplementary 
Methods). 
 
As with the “By Gene” tables, clicking on any row with more than one gene in the 
peak will result in a list of the genes in that peak region appearing in the right-
hand sidebar.  Clicking on one of these genes will load the corresponding “By 
Gene” Analysis page.  Clicking on the underlined peak region will load the copy 
number data for that region in the selected cancer subtype in the integrated 
genome viewer (IGV). 
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